为了表示浮点数,我们使用float,double和long double,有什么不同 ?
double的精度是float的2倍。
float是32位IEEE 754单精度浮点数1位符号,(8位为指数,23 *为值),即float具有7位十进制数字精度。
double是64位的IEEE 754双精度浮点数(符号1位,指数11位,值52 *位),即double具有15位十进制数字的精度。
让我们举个例子:
对于二次方程x2 – 4.0000000 x + 3.9999999 = 0,精确到10个有效数字的根是r1 = 2.000316228和r2 = 1.999683772
// C program to demonstrate
// double and float precision values
#include
#include
// utility function which calculate roots of
// quadratic equation using double values
voiddouble_solve(doublea, doubleb, doublec){
doubled = b*b - 4.0*a*c;
doublesd = sqrt(d);
doubler1 = (-b + sd) / (2.0*a);
doubler2 = (-b - sd) / (2.0*a);
printf("%.5ft%.5fn", r1, r2);
}
// utility function which calculate roots of
// quadratic equation using float values
voidfloat_solve(floata, floatb, floatc){
floatd = b*b - 4.0f*a*c;
floatsd = sqrtf(d);
floatr1 = (-b + sd) / (2.0f*a);
floatr2 = (-b - sd) / (2.0f*a);
printf("%.5ft%.5fn", r1, r2);
}
// driver program
intmain(){
floatfa = 1.0f;
floatfb = -4.0000000f;
floatfc = 3.9999999f;
doubleda = 1.0;
doubledb = -4.0000000;
doubledc = 3.9999999;
printf("roots of equation x2 - 4.0000000 x + 3.9999999 = 0 are : n");
printf("for float values: n");
float_solve(fa, fb, fc);
printf("for double values: n");
double_solve(da, db, dc);
return0;
}
输出:
roots of equation x2 – 4.0000000 x + 3.9999999 = 0 are ::
for float values: 2.00000 2.00000
for double values: : 2.00032 1.99968
通过以上实例,你掌握了这两个数据类型的不同之处了吗?希望对你有帮助哦~