斐波那契数列时间复杂度推导(解析西斐波那契数列通项公式)

文章目录[隐藏]
  • 时间复杂度真的是计算’时间’吗?
  • 时间复杂度公式:大O符号表示法
  • 常见时间复杂度类型及代码分析
  • 常数型O(1)
  • 对数型O(log n)
  • 线性型O(n)
  • 线性对数型O(n log n)
  • 平方型O(n^2)、立方型O(n^3)、K次方型O(n^k)
  • 平方底指数型O(2^n)、立方底指数型O(3^n)、K次底指数型O(k^n)
  • 阶乘型O(n!)
  • 如何理解斐波那契数列的时间复杂度O(2^N)?
  • 如何理解阶乘型时间复杂度O(n!)?
WPJAM TOC

正式工作也有3年的时间了,想要写出更加优雅的代码。

所以最近在刷leetcode补充数据结构和算法方面的知识。

学校里虽然学过,但是仅仅是有个大概的认识。只有实际工作过几年以后,才会明白数据结构和算法的重要性。

如果是通信专业出身的同学,或者是硬件出身的同学一定知道:对于一个信号,我们可以从时域和频域两个方面去分析。

那么计算机科学或者说软件开发中的算法怎么去分析呢? 有两个衡量优劣的维度:时间复杂度和空间复杂度。

  • 时间复杂度:执行当前算法所消耗的’时间’。
  • 空间复杂度:执行当前算法所占用的内存。

在这边博文中,我们来好好分析一下时间复杂度。

  • 时间复杂度真的是计算’时间’吗?
  • 时间复杂度公式:大O符号表示法
  • 常见时间复杂度类型及代码分析
    • 常数型O(1)
    • 对数型O(log n)
    • 线性型O(n)
    • 线性对数型O(n log n)
    • 平方型O(n^2)、立方型O(n^3)、K次方型O(n^k)
    • 平方底指数型O(2^n)、立方底指数型O(3^n)、K次底指数型O(k^n)
    • 阶乘型O(n!)
  • 如何理解斐波那契数列的时间复杂度O(2^N)?
  • 如何理解阶乘型时间复杂度O(n!)?
  • 参考资料

时间复杂度真的是计算’时间’吗?

把算法的执行时间当做时间复杂度?

这种方式是最为直观也是最容易想到的方式。

但是有一个问题,那就是代码在不同性能的机器上运行,以及在不同的状态下运行,会呈现出完全不同的运行时间。 比如说我有一台内存为32GB内存的mbp,还有一台8GB的台式机,假设其它的硬件条件比如cpu,主板以及机器负载状态一致。通常情况下,32GB的内存要比8GB的内存运行更快。而且这种理想状态下的只有单一变量的状态也是很难做到的。

所以不能通过计算算法的消耗时间作为时间复杂度。

那我们通常所说的’时间’复杂度中的’时间’到底是指什么呢?

聪明的前辈们想到了一种方式:大O表示法。

大O表示法内部有非常复杂的数学计算逻辑,我们偷个懒,不去证明公式,把公式用好就很厉害了。

为什么不去证明一下或者演算一遍? 我在大一曾经上过一门叫做高等代数的课,有道题目叫做:请证明1+1=2

看到这个题目应该知道为什么不深究大O表示法背后的数学了吧。

时间复杂度公式:大O符号表示法

T(n) = O(f(n))

  • f(n)是指每行代码执行次数之和
  • f(n)可以是这些值:1,log n,n,nlog n,n^2,n^3,n^k,2^n,n!
  • f(n)与O正相关
  • O(f(n))可以是这些值:O(1),O(log n),O(n),O(nlog n),O(n^2),O(n^3),O(n^k),O(2^n),O(n!)
  • 大O表示法实际表示的是代码执行时间的增长变化趋势,不是真实的运行时间,是一种趋势预估
  • 大O表示法中的f(n)是近似值。很多时候不会完全是1,log n,n,nlog n,n^2,n^3,n^k,2^n,n!这些完整的值。例如斐波那契数列的真实时间复杂度为O(2^N-1),由于N->∞,所以可以近似为O(2^N)。

更多的斐波那契数列时间复杂度的分析可以查看下文中的:如何理解斐波那契数列的时间复杂度O(2^N)?

常见时间复杂度类型及代码分析

理论扯了一大堆了,到精彩绝伦的Show me the code环节了。 先来看一张大O复杂度曲线图。

以下时间复杂度根据最佳->较好->一般->较差->糟糕的顺序排列。

  • 常数型O(1)
  • 对数型O(log n)
  • 线性型O(n)
  • 线性对数型O(n log n)
  • 平方型O(n^2)、立方型O(n^3)、K次方型O(n^k)
  • 平方底指数型O(2^n)、立方底指数型O(3^n)、K次底指数型O(k^n)
  • 阶乘型O(n!)

常数型O(1)

  • 常见于赋值和引用等简单操作
  • 算法消耗不随变量增长而增长,性能最佳
  • 无论代码执行多少行,即使有几千几万行,时间复杂度都为O(1)
  • 实际开发过程中,一次递归的时间复杂度也为O(1)。因为O(1^n)无论n为多少都为O(1)

let i = 0;
let j = 9;
i++;
j--;
let k = i + j;

代码分析: i为1,j为10,k为11。 时间复杂度为O(1)。

对数型O(log n)

  • 常用代码执行次数为x,n为目标数字。符合2^x=n,推导出x=log2(n)(log n)的情况
  • 算法消耗随n的增长而增长,性能较好

let n = 100;
let i = 1;
while(i i = i * 2
}

代码分析: i为128。 n为100,时间复杂度为O(log2(100))。 因为Math.log2(100)≈6.64,所以最终的时间复杂度为O(6.65)。

线性型O(n)

  • 常见于一次for循环,while循环
  • 算法消耗随n的增长而增长,性能一般
  • 无论n值有多大,即使是Inifinity,时间复杂度都为O(n)

let n = 100;
let j = 0;
for(let i = 0;i j = i;
}

代码分析: i为100,j为99。 n为100,时间复杂度为O(100)。

线性对数型O(n log n)

  • 常用于一个对时间复杂度为O(log2(n))的代码执行一个n次循环
  • 算法消耗随n的增长而增长,性能较差

let n = 100;
for(let m = 0; m let i = 1;
while(i i = i * 2
}
}

代码分析: i为128。 m为100,n为100,时间复杂度为O(m log2(n))。 因为100* Math.log2(100)≈664.39,所以最终的时间复杂度为O(664.39)。

平方型O(n^2)、立方型O(n^3)、K次方型O(n^k)

  • 最常见的算法时间复杂度,可用于快速开发业务逻辑
  • 常见于2次for循环,或者3次for循环,以及k次for循环
  • 算法消耗随n的增长而增长,性能糟糕
  • 实际开发过程中,不建议使用K值过大的循环,否则代码将非常难以维护

let n = 100
let v = 0;
for(let i =0;i for(let j = 0; j v = v+j+i;
}
}

代码分析: v为990000,i为100,j为100. n为100,时间复杂度为O(100^2)。 也就是O(10000)。

立方型O(n^3)、K次方型O(n^k)和平方型O(n^2)类似,无非是多了几次循环。

// 立方型O(n^3)
for(let i =0;i for(let j = 0; j for(let m = 0; m

}
}
}
// K次方型O(n^k)
for(let i =0;i for(let j = 0; j for(let m = 0; m for(let p = 0; p ... // for循环继续嵌套下去,k值不断增大
}
}
}
}

平方底指数型O(2^n)、立方底指数型O(3^n)、K次底指数型O(k^n)

  • 常见于2次递归的情况,3次递归以及k次递归的情况
  • 算法消耗随n的增长而增长,性能糟糕
  • 实际开发过程中,k为1时,一次递归的时间复杂度为O(1)。因为O(1^n)无论n为多少都为O(1)。

斐波那契数列(兔子数列、黄金分割数列):1、1、2、3、5、8、13、21、34··· 题目:leetcode 509 斐波那契数

题解:509.斐波那契数

/**
* @param {number} N
* @return {number}
*/
var fib = function (N) {
/**
* 解法1: 递归
* 性能: 88ms 34.2MB
* 时间复杂度:O(2^N)
*/
if (N <= 1) return N;
return fib(N - 1) + fib(N - 2);
};

假设N等于100。 代码分析: 结果为 xxx。 因为浏览器直接卡死。nodejs中也运行不出来。 具体原因则是2的100次方真的太大了。算不来。 N为100,时间复杂度为O(2^100)。 因为Math.pow(2, 100)= 1.2676506002282294e+30,所以最终的时间复杂度为O(1.2676506002282294e+30)。大到爆表。

立方底指数型O(3^n)、K次底指数型O(k^n)与平方底指数型O(2^n)类似,只不过基数变为了3和k。

O(Math.pow(3, n))
O(Math.pow(k, n))

假设n为100,假设k为5。 Math.pow(3, n)为5.153775207320113e+47。 Math.pow(5, n)为7.888609052210118e+69。 时间复杂度也是巨高,真的是指数爆炸 。

更多的斐波那契数列时间复杂度O(2^N)的分析可以查看下文中的:如何理解斐波那契数列的时间复杂度O(2^N)?

阶乘型O(n!)

  • 极其不常见
  • 算法消耗随n的增长而增长,性能糟糕

function nFacRuntimeFunc(n) {
for(let i=0; i nFacRuntimeFunc(n-1);
}
}

阶乘型O(n!)的时间复杂度按照(n!+(n-1)!+(n-2)!+ ··· + 1) +((n-1)!+(n-2)!+ ··· + 1)+ ··· 的方式去计算。 注意哦,这里是多个阶乘的和。不仅仅是n * (n-1) * (n-2) * (n-3)···1。 假设n从0到10,它的算法复杂度O(n!)依次为1,4,15,64,325,1956,13699,109600,986409,9864100··· 为了和上文中的其它算法复杂度做比较,n为100时是多少呢? O(2^n)为10才是1024,n为100时O(2^n)直接浏览器卡死了。 O(n!)才为10就接近1000万了,真要是n设置成100,计算到机器烧了也计算不出吧。 所以n为100时的O(n!)就不要想了,庞大到恐怖的一个数字。

更多的阶乘型时间复杂度O(n!)的分析可以查看下文中的:如何理解阶乘型算法复杂度O(n!)?

如何理解斐波那契数列的时间复杂度O(2^N)?

O(2^N)

  • Math.pow(base, ex),2个递归所以base是2。
  • N的话是因为N->∞,但其实真正是O(2^(N-1))。

/**
* @param {number} N
* @return {number}
*/
var fib = function (N) {
/**
* 解法1: 递归
* 性能: 88ms 34.2MB
*/
console.log('foo');
if (N <= 1) return N;
return fib(N - 1) + fib(N - 2)
};

N打印foo数O(2^N)11O(2^0)22^1 + 1O(2^1)32^2 + 1O(2^2 )42^3 + 1O(2^3 )52^4 + 1O(2^4 )

通过上表我们分析得到: 如果包含1的话,严格来讲时间复杂度是O(2^(N-1))。 如果从N>1开始计算,时间复杂度确实是O(2^N)。 斐波那契数列非常长,N->∞,因此可以将斐波那契数列的时间复杂度直接看做是O(2^N)。

如何理解阶乘型时间复杂度O(n!)?

O(N!)

我们把上面的代码改造一下,增加一个count用来统计O(n!)。

let count = 0;
function nFacRuntimeFunc(n) {
for(let i=0; i count++;
nFacRuntimeFunc(n-1);
}
}

阶乘型O(n!)的时间复杂度按照(n!+(n-1)!+(n-2)!+ ··· + 1) +((n-1)!+(n-2)!+ ··· + 1) 的方式去计算。 注意哦,这里是多个阶乘的和。不仅仅是n * (n-1) * (n-2) * (n-3)···1。 上述示例中的count即为复杂度的值。

n多次n! + (n-1)! + ··· + 1!countO(n!)111O(1)2(2!+1!) +(1!)4O(4)3(3!+(2!+1!)+1!)+((2!+1!)+1!)+(1!)15O(15)4…64O(64)5…325O(325)6…1956O(1956)7…13699O(13699)8…109600O(109600)9…986409O(986409)10…9864100O(9864100)

快看看这个表格吧,n为10的时候O(n!)达到了O(9864100),接近了O(一千万)。这种算法的性能真的是糟糕到极致了。

© 版权声明
评论 抢沙发
加载中~
每日一言
不怕万人阻挡,只怕自己投降
Not afraid of people blocking, I'm afraid their surrender